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Stellar angul ajzes

Theright kind of telescope
TheMichelson Stellar Interferometer
Coherence and Optical Delay

Combination of EM waves

Fringes and visibility

Thevisbility function and model geometries
Calibrators
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Stellar Angular Sizes
(Back of the envelope)

« Usethe sun asour prototype
e Solar vs. bright star apparent brightness:
e AV=-26: Vg—V;= _2-5log(|e/| D)

- 2.5 x 1019 change in apparent brightness

» Since brightness scales with disk area:
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Sincethesunis~30' =1800" - & =12 mas

* Newton realized stars were of this size order (mas)
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Right Kind of Telescope

» Telescope resolution goes l
as A/ D (radians)
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— Can get away with D~2min

the visible (8m in K-band)
e Typical parameters are
A~1pm, 6~1 mas S
— Need D~100m
— Leads usto interferometry T

—_—
 Very largest stars are ~50 -‘-
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Michelson Interferometer Jo Sarisd
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Coherence of thefringes

The coherencetimefor afringeisthelength of timebeforea
significant phase glitch occurs.
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Likewise, this can beviewed in terms of a coherence length.
. =cr,
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Using a Johnson K-band filter (A=2.2 um, AA=0.4 um), the coher ence
length for thefringeis 12 um. The smaller the bandwidth, the larger
the coherence time.
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The Optical Delay

Sincethe Earth turnsabout its axis, the starsin the sky move with
respect to theinterferometer. This motion must be compensated by
the optical delay line, such that

d dz
—(OD) =Bcos(z)—cosL
dt( ) ( )dt

With OD = optical delay, B = projected baseline, z=the zenith angle
of the star and L isthelatitude of the interferometer.

Near zenith (z = 0 deg), the maximum motion (at the equator) is
about dz/dt = 7.3 x 10 rad/sec.

For abaseline of 38 m at latitude 31°, the changein OD is
2.4 mm/sec.

Thisrate of change must be compensated to an accuracy of the
coherence length, | .



Combination of two EM waves

Plane Waves
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E=E+E,, where |=EE"

Consider two EM waves:
E, =a, exp (ik*OP-iut) E, =a, exp (ik*OP,-iut)

Combining the two waves physically meanstaking the complex conjugate
mathematically:

| =E,E, = =1, +1,+21, 1, cos(kA)

whereA = (OP, - OP))



M onochromatic Point Response Function

Now, assume the intensities from both aperturesareequal (I, =1,=1). Then,
the point-response function for a source at infinity becomes

R,P (Q) = IZ_TI — 1 = cos (kA).

However, thisisa perfect-world scenario. Thelight collected by areal
interferometer is not monochromatic (infinitely small bandwidth), but
polychromatic.

IMany colors of light

/| Poiychromate light




Effects of Spectral Bandwidth

Consider arectangular filter of width d; and center o

IR)- |R,Fdo

Averagetheresponse

do
Over the bandwidth: j
Use simplefilter function F: 1 9o*9/2
=— |Rdo
0 0y-0,12
= sin(2rra\)

Evaluate at the limits;




Band-averaged response function

Sin(70,A)
(71Q1)

= cos(27o ,A) sinc(710,A)

<RP> = cos(271a,\)

The sinc function 14
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But, we want to measure a star’s sizel

We need to calculate the response to an extended
source. Where to put the beam?

Beam under samples obj ect Beam reoriented for better resolution
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Extended sources

Done exactly the same asfor a point source, but now we need to
sum over all the point sour ces (that make up the extended source)
within the beam.

| _(A)=2 TI L(&)de + TI ,(&)cos(2rmo)(A+ £)de

Fror +  Intendgity addition

Rearranging terms, the extended r esponse becomes.

RE(A) = szlf:(TfT) -1= ?tT II ,(&)cos(2mo)(A+€)de



Just asin the casefor a point-response, we have:

| R (#)do

R)-

j (passband)do
We use our rectangular filter function, and thus:;
1 Og+0,12
<RU(A)> —— j (&) = | cos(2rr0)( +¢) (de
TOT —00 U 09—0,12
E _ 1 N P _ 1 P
<RU(A)>——_[IJ(£)<R (A+e))de =——1 O(R")
FTOT —o0 FTOT

Theresponseto an extended sour ceisthe convolution of the point-response
function with the intensity function of the sourcel



Thevisibility function, when transformed into the Fourier (or “UV”) planeis

defined as
+ .
V(u,v) = j j _::I (n,£)e 2" dadn

Wetakethe Fourier transform

+ 00 .
G(s)=[ g(xe* dx
— 00
which yields

G|” =G(9)G(s)" =1,° +1,% + 21,1, cos(277¢z)

and thus
thefringevishbility isthe Fourier transform of the dual aperture function

y2 = B9G(
G(0)G(0)’
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Let’slook at a“uniform disk”

Stars, to first order, are nothing more than a uniformly-bright
circleon the sky as seen by the interferometer.

Weintroduce a “top-hat” function.




So, weinsert a model geometry. In this case, a top-hat function (uniformly-

bright disk) isused, with the substitution (z = 2rrs) yields

1 (2ma
G(s) = > jO z),(2)dz
H(r/{2a) = { ;1: r>a Perfor ming the integration and utilizing
' v2 = GG

yieldsthe visibility function for a uniform disk:

Jl(nB@/A,)j2

IVI2=(2
TBa/ A
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Fringe Visibility

e Constructive &

destructive = Zero
interference of light OPD

* Fringe contrast or
visibility:
|7 =1

V=
|+

o Cadlibration issues
— Detector linearity
— Zero point
measurement
— Nolise characterization

Actual starlight fringes from IOTA - 3 And
Photo credit: R.R. Thompson

18



Visibility Function L SN

* Fora‘uniformdisk’, 10
visibility matches: 0.9 1\ . —20m
J; (X 7B 08 | | . —8m
V= 19 where x = 7 07 | :
X < one |
B is the projected baseline = 8'2 |
fisthe stellar disk size T .
A isthe instrumental wavelength ” oal
« Baseline, wavelength 02 |
known 01 - :
— Can solvefor @ 0.0 ‘ : ‘ ‘
e UseV?instead of V o 5 10 1L 20
— Unbiased estimator of Angular Size (mas, K Band)
visibility
— See Colavita (1999)
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Other Geometries

Geometry Intensity function Visibility Function Parameters
. . N J,(TBOIA)Y

Uniform disk H(r/2a) = {o (ij H(r<a)=1, H(r>a)=0

Gaussian Disk ey oxd ~AT o isthe FWHM of the gaussian
1 oo 8In2
NP

Thin circular ring 10(r -2) 3, (7o) width << diameter, d

Two displaced

point sources  |,5(x _% 0+ 1,5(x+ % 5y N+ @=Vo) + 2, (1-V;) cosy/

y = 2msp

0 = separation distance
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Binary stars

L et’s say we wish to resolve a binary star orbit. We assume the two
starsare uniform disks (UD), such that

v lzz(le(nBe//\,)jz
TBE/ A

The expects squared visibility of a binary star isgiven by:

(VARAVAS S . VAVA cos(— Ig Q)

(1+r7)

whereV,; and V, are thevishbility moduli for the two components, r
ISthe apparent brightnessratio, B isthe projected baseline vector,
and sisthe primary-secondary angular separation vector on the
plane of the sky.
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Binary stars

« Usethevighility datato test against a
model orbit.

* Determine best-fit orbital parameters:
separation, eccentricity, period, etc.

o« UseKepler'sLawsand radial velocity data
to determine star masses.

* From here, can investigate binary star
evolution! (Do starsin binary systems
evolve in the same way asasingle star?
Bl G question in astrophysics today.)
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Other geometries

Starswith disks (YSOs, T Tauri stars, PPN,

)
Multiple-star systems

Departures from spherical symmetry:.
elongated stars

Stellar photospheric phenomena: star spots,
limb darkening/brightening, center-to-limb
variation

Multi-wavelength studies to determine
chemistry/geometry
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Visibility Function: Calibrators

e Atmospheric and
Instrumental effects reduce
system V2

e Observe ‘unresolved’
sources to establish system
response

— Use an estimate of size
— Assume V? gains are equal

— Gain factor is analogous to
Strehl ratio

— Flattening portion of
visibility function — errors
In calibrator size do not
trandate into errorsin
system V?

Calibrator region

Visibility”z
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Summary

Thelargest telescopes can resolve down to ~ 50 mas

Thus, larger “apertures’ are needed

| nterferometerswith baselines ~ 100 m resolveto 1 mas
atA=1pum

The quantity measured by an interferometer iscalled the visibility

Thevigbility isthe Fourier transform of the dual aperture
function

Theinterpretation of the visibility is based on mode -dependent
assumptions (uniform disk, gaussian disk, 2 point sour ces, etc).

Interferometersaren’t perfect instruments:. calibrator starsare
needed to normalize target visibilities.

Two-telescope interferometer data is entirely model-dependent (no
referencefor the phase information).

Number of apertures (N) reduces model-dependence: fraction of
information from observation goesas (N-2) / N
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